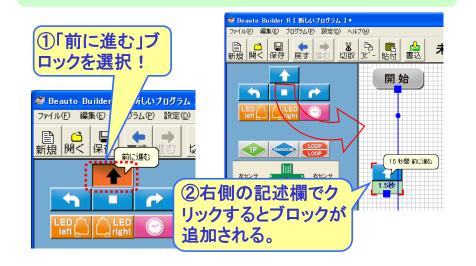
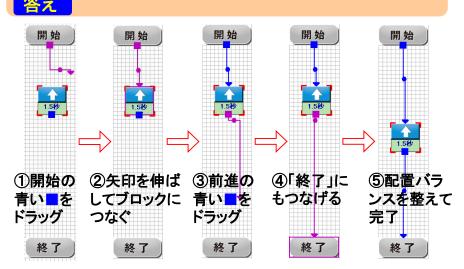

BeautoRacer -基礎プログラミング-



BeautoBuilderRの起動

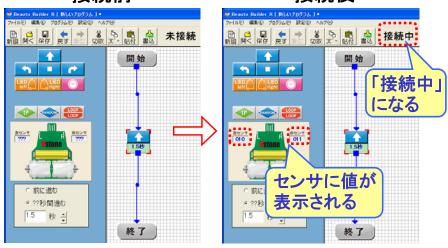

<u>演習2〕</u> 1.5秒だけ前進するプログラムを作成せよ。

命令ブロックの接続


演習2

1.5秒だけ前進するプログラムを作成せよ。

PCとロボットの接続

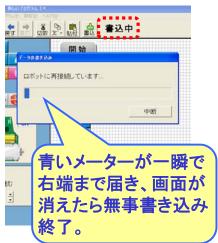


※ロボットをケーブルにつないだ状態でグラグラ動かしたりすると、ケーブルの接触が不安定になって通信が途切れることがあります。

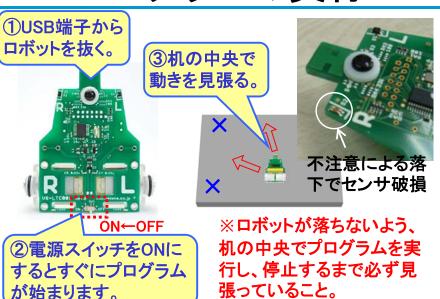
接続の確認方法

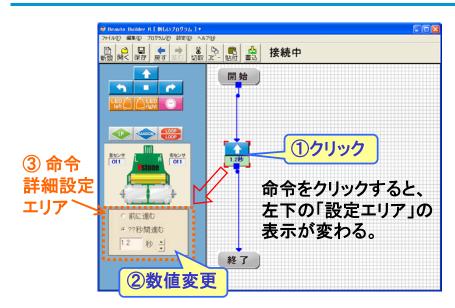
接続前

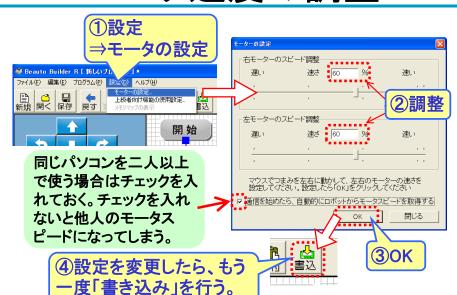
接続後



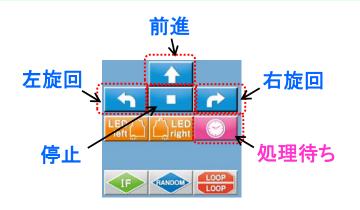
センサ値が???のときは、接続がうまくいっていません。


プログラムの書き込み


※書き込みに10秒以上かかる場合は失敗している。 「中断」をクリックして一度 ケーブルを抜き差しして書き込みなおす。


プログラムの実行

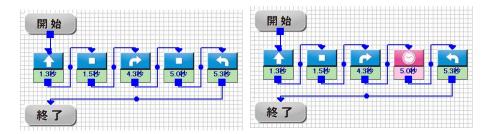
前進時間の変更



モータ速度の調整

命令のカスタマイズ

演習3 1.3秒間直進⇒一時停止⇒右旋回4.3秒⇒5秒間 停止⇒左旋回5.3秒するプログラムを作成せよ。 ただし、モータ速度55とする。

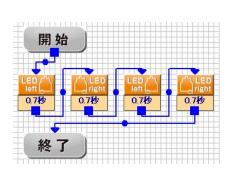

12

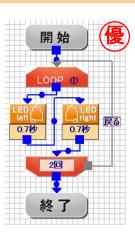
命令のカスタマイズ

演習3

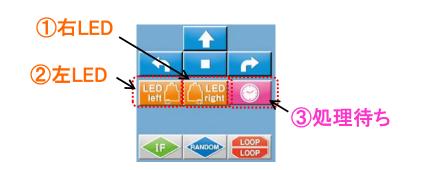
答え

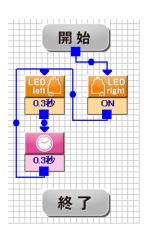
1.3秒間直進⇒一時停止⇒右旋回4.3秒⇒5秒間 停止⇒左旋回5.3秒するプログラムを作成せよ。 ただし、モータ速度55とする。

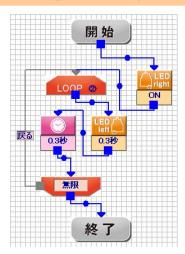

LEDプログラミング(1)


演習4 左右のLEDを交互に0.7秒ずつ2回点灯させるプログラムを作成せよ。

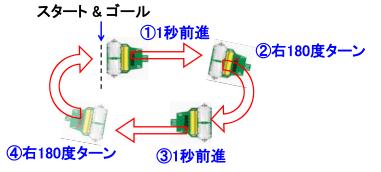
LEDプログラミング(1)


演習4 答え 左右のLEDを交互に0.7秒ずつ2回点灯させるプログラムを作成せよ。


LEDプログラミング(2)

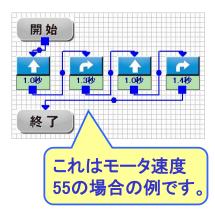

演習5 右のLEDを点灯したまま、左のLEDを0.3秒間隔 で点滅させるプログラムを作成せよ。

LEDプログラミング(2)


「演習5」右のLEDを点灯したまま、左のLEDを0.3秒間隔 で点滅させるプログラムを作成せよ。

1周して戻るプログラム

演習6 1秒前進⇒右旋回180度⇒1秒前進⇒右旋回 180度⇒スタート地点に戻るプログラムを作成 せよ。ただし、モータ速度は自由。



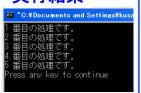
【プログラムのポイント整理】どの命令が必要なのか? どういう順番でつなげるのか? 時間をどう設定するか

1周して戻るプログラム

[演習6] 1秒前進⇒右旋回180度⇒1秒前進⇒右旋回 180度⇒スタート地点に戻るプログラムを作成 せよ。ただし、モータ速度は自由。

180度ターンは旋回の 命令を使います。180 度ターンを行なうには、 旋回の秒数を変えな がら何度もプログラム を実行して、適度な時 間を調べる必要があり ます。

BeautoRacer

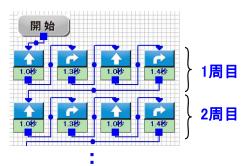

-実用プログラミング-

繰り返しプログラミング

#include (stdin h) int main(void) int i: for(i=1; i<=5; i++){ printf("%d 番目の処理です。\n", i); LOOP return 0; の中身 LOOP

C言語の場合は、 決められた単語と 文法を使って、処 理を記述していき ます。"ソースコー ド"と呼びます。

実行結果

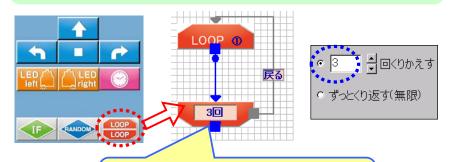

本実験は、言語を記述する代わり に絵文字に相当するフローチャート だけでプログラミングします。

BeautoRacer 10 LOOPブロック

周回プログラム

演習7

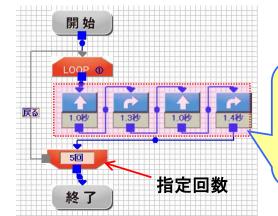
ロボットが1周走るプログラムを改良して、5周 走るプログラムを作成せよ。



同じ命令を一塊と考え、これ を5個並べると作成できます。 しかし、手間がかかる上にプ ログラムが見づらくなります。 もし100周に増やしたい場合 は・・・ お手上げです。

そこで、同じ命令を何度も実行する場合 は「繰り返し(LOOP)」を使います。

繰り返しブロックの使い方

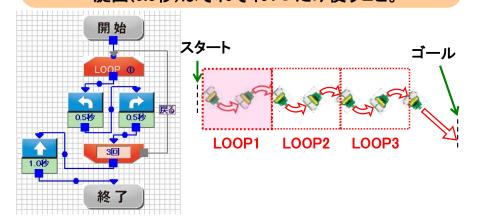

繰り返しブロック(LOOP)は、「繰り返しの始まり」と「終 わり」の二つがセットになっています。繰り返す回数を自 由に設定できます。

繰り返しブロックで挟まれた命令を 設定した回数だけ繰り返します。

周回プログラム

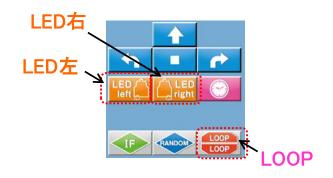
ロボットが1周走るプログラムを改造して、5周 走るプログラムを作成せよ。

繰り返しブロックで挟 まれた命令(1周する プログラム)を設定し た回数(5回)だけ繰 り返します。

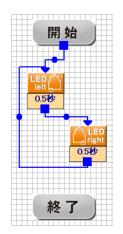

ジグザグプログラム

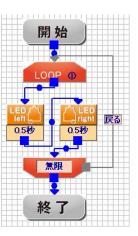
20

演習8 3回ジグザグに走った後、最後に1秒直進して終 了するプログラムを作りましょう。ただし、必ず LOOPを使い、前進(1.0秒)、右旋回(0.5秒)、左 旋回(0.5秒)はそれぞれ1つだけ使うこと。



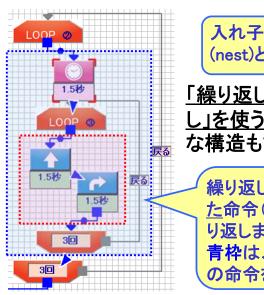
ジグザグプログラム


LED点滅プログラム


演習9 左右のLEDを交互に0.5秒ずつ無限に点滅する プログラムを作成せよ。

LED点滅プログラム

图9 左右のLEDを交互に0.5秒ずつ<u>無限に</u>点滅する プログラムを作成せよ。

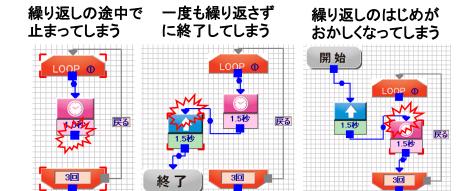


28

__

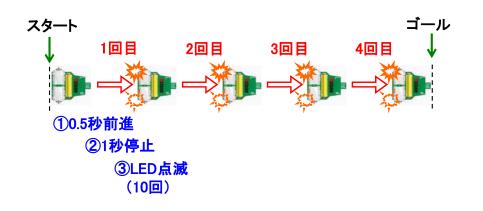
繰り返しプログラミングの応用。

入れ子とかネスト (nest)とも呼びます。

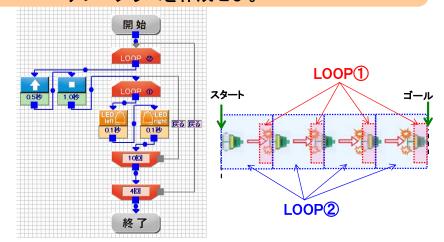

「繰り返し」の中に「繰り返 し」を使うというような複雑 な構造もできます。

繰り返し<u>ブロックで挟まれ</u> た命令(青枠)を3回だけ繰り返します。

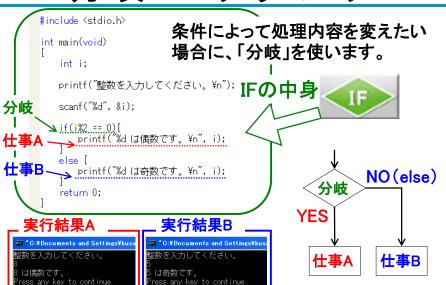
青枠は、1.5秒待って赤枠 の命令を3回繰り返します。


繰り返し命令の注意点

繰り返し命令は、「繰り返しの始まり」から「終わり」に正しくつながらないと、おかしな動作になります。


2重繰り返しプログラム

演習10 0.5秒前進して1秒停止し、0.1秒間隔で左右の LED点滅を10回繰り返す。この処理を4回繰り返 すプログラムを作成せよ。



2重繰り返しプログラム

演習10 0.5秒前進して1秒停止し、0.1秒間隔で左右の LED点滅を10回繰り返す。この処理を4回繰り返 すプログラムを作成せよ。

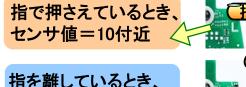

分岐プログラミング



センサ値の計測

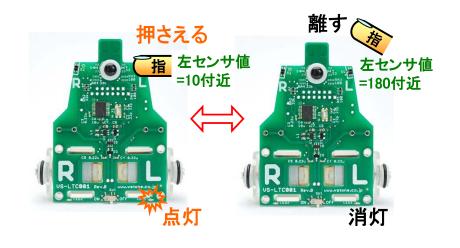
指でセンサを押さえて反応を確かめてみよ。

- ・センサを指で押さえると数値はいくらか?
- 指をはなすと数値はいくらか?



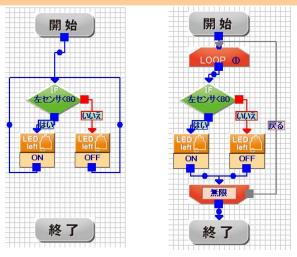
センサ閾値の決定方法

センサ値=180付近

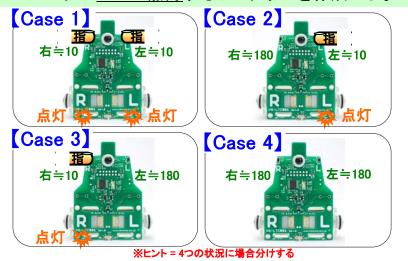


センサ値は、ノイズや電源の影響で、 実際には若干変化します。

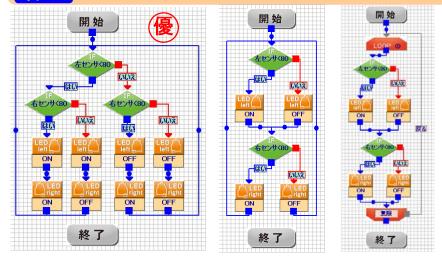
ノイズなどの影響を踏まえ、「指を押さえているとき」と「指を離しているとき」の状態を分けるしきい値は、 2つのセンサ値の中央値 (10+180)/2=85 にします。


条件によるLEDの点灯・消灯 [®]

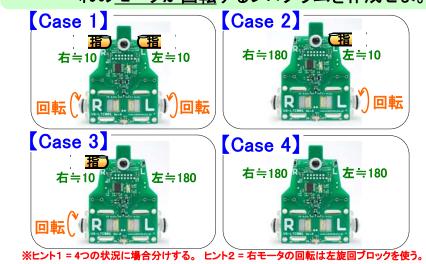
演習11 左センサを指で押さえたら左LEDが点灯、指を離したら消灯するプログラムを作成せよ。


条件によるLEDの点灯・消灯 "

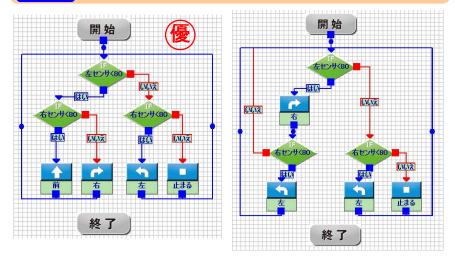
演習11 左センサを指で押さえたら左LEDが点灯、指を 答え 離したら消灯するプログラムを作成せよ。


条件によるLEDの点灯・消灯

演習12 左右センサをそれぞれ指で押さえたら、それぞれのLEDが点灯するプログラムを作成せよ。


条件によるLEDの点灯・消灯 [®]

演習12左右センサをそれぞれ指で押さえたら、それぞ答えれのLEDが点灯するプログラムを作成せよ。


条件によるモータ回転・停止

(演習13) 左右センサをそれぞれ指で押さえたら、それぞれのモータが回転するプログラムを作成せよ。

条件によるモータ回転・停止 "

演習13 左右センサをそれぞれ指で押さえたら、それぞ 答え れのモータが回転するプログラムを作成せよ。

